WÄRMEÜBERGANG AN TURBULENTE UND LAMINARE RIESELFILME

H. LIMBERG

Deutsche Akademie der Wissenschaften zu Berlin, DDR

(Received 2 September 1972)

Zusammenfassung-Der Temperaturverteilung in einem Rieselfilm, der an einer senkrechten ebenen (beheizten oder gekühlten) Wand herabfliesst, wird die Wärmeleitungsgleichung mit Rand- und Anfangsbedingungen zugrunde gelegt, die einer konstanten Wandtemperatur T₀ und einer über den Filmquerschnitt konstanten Eintrittstemperatur T1 entsprechen. Durch einen Separationsansatz erhält man ein Sturm-Liouvillesches Eigenwertproblem, das durch ein Differenzenverfahren numerisch gelöst wurde. In mehreren Tabellen sind für einige Reynoldssche Zahlen jeweils die ersten acht Eigenwerte und -funktionen sowie Fourierkoeffizienten enthalten. In einem Diagramm ist die Nusseltsche Zahl dargestellt und mit Messungen von Wilke verglichen worden. Es zeigt sich gute Übereinstimmung für den turbulenten Rieselfilm, aber auch für den laminaren Film mit glatter Oberfläche.

NOMENKLATUR

- universelle Konstante des turbulenten a, Impulstransports in der Unterschicht, = 25.1.(15);
- Fouriersche Koeffizienten, (18);
- turbulenter Austausch der Wärme, (1);
- $a_n, A_q, \overline{A}_q, \overline{A}_q, \overline{A}_q,$ dimensionsloser turbulenter Wärmeaustausch, (6);
- A., turbulenter Austausch des Impulses, (14);
- spezifische Wärme bei konstantem С, Druck.(1):
- $= (Pr_{\cdot})^{-1} = 0.89, (14);$ E_0
- F. Froudesche Zahl, (17):
- Erdbeschleunigung *g*,
- Proportionalitätsfaktor. (39): k.
- verallgemeinerter Prandtlscher Mi l_a , schungsweg für den Wärmeaustausch, (14a);
- m, relative Breite der inneren Schicht, = 0.6, (14d);
- Nusseltsche Zahl, (26); Nu.
- Nusseltsche Zahl bei thermisch aus- Nu_{a} , gebildeter Strömung (Bezeichnung von W. Wilke [2]), $= Nu_{w}$ für grosse ξ , (Abb. 3):

- Nu_{w} , Nusseltsche Zahl, von Wilke verwendet, (29);
- Prandtl-Zahl, (12); Pr,
- turbulente Prandtl-Zahl, (14); $Pr_{.}$
- Wärmestromdichte an der Wand, (26); q_0
- Re. Reynoldssche Zahl, (13);
- Re_{0} , mittlere Reynoldssche Zahl. (35):
- S, charakteristische Kennzahl, (16);
- Τ, Temperatur der Flüssigkeit, (1);
 - Wandtemperatur, (3);
- mittlere Rieselfilmtemperatur, (31);
- $T_0, T_m, T_m, T_1,$ Eintrittstemperatur, (2);
- Geschwindigkeit der ausgebildeten u, Rieselfilmströmung, (1):
- = u(0), Geschwindigkeit an der freien u_1 , Oberfläche des Rieselfilms, (5);
- w, mittlere Geschwindigkeit der ausgebildeten Rieselfilmströmung, (36);
- х, Koordinate in Strömungsrichtung:
- Koordinate senkrecht zur Strömungsу, richtung;
- ÿ, Wandabstand, (14a);
- Wärmeübergangszahl, (30); α.
- Eigenwerte, (18), (19); α",
- kleinster Eigenwert, (37); αο
- δ. mittlere Rieselfilmdicke:

$$\eta, \qquad = y/\delta;$$

$$\bar{\eta}, \qquad = \bar{y}/\delta, (14b);$$

- \varkappa , universelle Konstante des logarithmischen Geschwindigkeitsgesetzes, = 0,41, (14c);
- λ , Wärmeleitzahl;
- $\bar{\lambda}, \qquad = (Pr \cdot Re)^{-1};$
- μ , Zähigkeit;
- v. kinematische Zähigkeit, = μ/ρ :
- $\psi_n(\eta)$, Eigenfunktionen, (18), (19);
- ρ . Dichte:
- τ , Schubspannung;
- τ_0 , Wandschubspannung;
- χ , dimensionslose Temperatur, (5);
- $\varphi(\eta)$, dimensionslose Geschwindigkeit, (5);

$$\xi, \qquad = x/\delta.$$

1. EINLEITUNG

BEI DER Kühlung von Wänden und Rohrsystemen spielen Wärmeübergangsprobleme, insbesondere zwischen einer festen Wand und

ABB. 1. Wärmeübergang zwischen fester Wand und Rieselfilm.

einem an dieser herabfliessenden Flüssigkeitsfilm, eine bedeutende Rolle. Zu dieser Problematik liegen deshalb zahlreiche Experimente vor, u.a. von Brauer [1] und Wilke [2].

Die vorliegende Arbeit behandelt theoretisch den Wärmeübergang zwischen einer festen ebenen Wand und einem an ihr senkrecht herabfliessenden Rieselfilm (Abb. 1). Die bei

grösserem Flüssigkeitsdurchsatz durch Oberflächenwellen und turbulente Schwankungen stark verformte Filmoberfläche wird hier als glatt angenommen und habe den mittleren Abstand δ (mittlere Filmdicke) von der Wand. Wie in zwei vorangegangenen Arbeiten des Verf. [3, 4] über das Geschwindigkeits- bzw. Stoffkonzentrationsfeld in einem Rieselfilm wählen wir ein kartesisches Koordinatensystem so, dass die x-Achse in Strömungsrichtung längs der mittleren freien Flüssigkeitsoberfläche verläuft und die y-Achse zur Wand zeigt. Den Ursprung legen wir so fest, dass in dem Querschnitt x = 0an der Wand der Wärmeübergang einsetzt. während für x < 0 kein Wärmeübergang zwischen Flüssigkeit und fester Wand stattfindet. Es wird angenommen, dass die Rieselflüssigkeit mit einer über dem Querschnitt x = 0 konstanten Eintrittstemperatur T_1 anströmt und die feste Wand für alle $x \ge 0$ eine von T_1 verschiedene konstante Temperatur T_0 hat. Die Strömungsgeschwindigkeit habe nur eine x-Komponente u, die lediglich von v abhängt: u = u(y). Es wird also von Ein- und Auslaufeffekten abgesehen und nur der ausgebildete Strömungszustand betrachtet. Das Geschwindigkeitsprofil u = u(y) wurde bereits vom Verf. [3] berechnet.

2. PROBLEMSTELLUNG

Zu bestimmen ist das Temperaturfeld T = T(x, y), das als stationär angenommen wird, für $x \ge 0$ und $0 \le y \le \delta$. Es bezeichnen im folgenden λ die Wärmeleitzahl, ρ die Dichte, μ die Zähigkeit der Flüssigkeit, c_p ihre spezifische Wärme bei konstantem Druck und A_q den turbulenten Wärmeaustausch. Der Wärmeübergang wird durch die Energiegleichung

$$u(y)\frac{\partial T}{\partial x} = \frac{\lambda}{\rho c_p} \frac{\partial^2 T}{\partial y^2} + \frac{\partial [A_q(\partial T/\partial y)]}{\partial y}$$
(1)

beschrieben mit den folgenden Anfangs- und Randbedingungen:

(a) Anfangsbedingung

$$T(0, y) = T_1 \text{ für alle } y, 0 \le y < \delta.$$
 (2)

(b) Erste Randbedingung

$$T(x,\delta) = T_0$$
 für alle $x \ge 0.$ (3)

(c) Zweite Randbedingung

$$\left.\frac{\partial T}{\partial y}\right|_{y=0} = 0 \text{ für alle } x \ge 0; \qquad (4)$$

d.h. an der freien Filmoberfläche soll kein Wärmeübergang stattfinden.

Durch Übergang zu den dimensionslosen Variablen

$$\xi = \frac{x}{\delta}, \eta = \frac{y}{\delta}; \varphi(\eta) = \frac{u(y)}{u_1}, \chi(\xi, \eta) = \frac{T - T_1}{T_0 - T_1}$$
(5)

mit der konstanten Oberflächengeschwindigkeit $u_1 = u(0)$ erhält man aus (1) nach Multiplikation mit $\delta/(u_1(T_0 - T_1))$ die dimensionslose Energiegleichung

$$\varphi(\eta)\frac{\partial\chi}{\partial\xi} = \frac{\partial}{\partial\eta} \left[(\bar{\lambda} + \bar{A}_q)\frac{\partial\chi}{\partial\eta} \right]$$
(6)

mit der Anfangsbedingung

$$\chi(0,\eta) = 0 \text{ für alle } \eta, 0 \le \eta < 1 \tag{7}$$

und den Randbedingungen

$$\chi(\xi, 1) = 1 \text{ für alle } \xi \ge 0, \tag{8}$$

$$\frac{\partial \chi}{\partial \eta}\Big|_{\eta=0} = 0 \text{ für alle } \xi \ge 0; \tag{9}$$

wobei

$$\lambda = \frac{\lambda}{\rho c_p u_1 \delta} = \frac{1}{Pr \cdot Re}$$
(10)

und

$$\bar{A}_q = \frac{A_q}{u_1 \delta} \tag{11}$$

gesetzt ist und

$$Pr = \frac{\mu c_p}{\lambda} \tag{12}$$

die Prandtlsche Zahl,

$$Re = \frac{u_1 \delta}{v} \tag{13}$$

die mit der Oberflächengeschwindigkeit u_1 , der mittleren Filmdicke δ und der kinematischen Zähigkeit $v = \mu/\rho$ gebildete Reynoldssche Zahl bedeuten. Dem turbulenten Wärmeaustausch A_q legen wir, dem Auftreten relativ dicker Unterschichten (gleiche Grössenordnung des turbulenten und molekularen Transports) Rechnung tragend, eine Kombination (vgl. [6]) des Ansatzes von Szablewski [5] bzw. [7] für die vollturbulente Schicht einer turbulenten Grenzschichtströmung und des auf den Wärmeaustausch verallgemeinerten (s. Szablewski [7]) van Driestschen Ansatzes für die Unterschicht zugrunde:

Mit $A_q = E_0 A_\tau$, wobei A_τ den turbulenten Impulsaustausch bezeichnet, bzw. mit der als konstant angenommenen turbulenten Prandtl-Zahl

$$Pr_{t} \equiv \frac{A_{\tau}}{A_{a}} = \frac{1}{E_{0}} = 0,89 \tag{14}$$

nach Messungen inkompressibler turbulenter Temperaturgrenzschichten in Luft (vgl. z.B.[7]) setzen wir

(a) für die vollturbulente Schicht

$$A_q = 1_q^2 \frac{\partial u}{\partial \bar{y}}$$
 (\bar{y} Wandabstand) (14a)

mit

$$\begin{aligned} l_q &= \sqrt{(E_0)} \varkappa \bar{y} \, \mathrm{e}^{-\eta/m} \, \mathrm{fur} \, 0 \leq \bar{\eta} \leq m; \\ A_q &= A_q \big|_{\bar{\eta}=m} \qquad \mathrm{fur} \, m \leq \bar{\eta} \leq 1; \\ \end{aligned}$$
(14b)

Dabei ist

$$\varkappa = 0.41 \tag{14c}$$

die universelle Konstante des logarithmischen Gesetzes der Geschwindigkeitsverteilung und

$$m = 0.6$$
 (14d)

die relative Breite der sogenannten "inneren", dem Einfluss der Wand unterliegenden Schicht. Der turbulente Austausch in der sogenannten "äusseren" Schicht wird als konstant angenommen. (b) Für die Unterschicht setzen wir

$$A_q = l_q^2 \frac{\partial u}{\partial \bar{y}}$$

mit dem verallgemeinerten van Driestschen Ansatz

$$l_q = \sqrt{(E_0)} \varkappa \bar{y} \left[1 - \exp\left(-\frac{1}{\sqrt{(E_0)}} \frac{1}{a} \frac{\sqrt{(\tau/\rho)} \bar{y}}{v}\right) \right]$$

wobei

$$a = 25,1$$

die universelle Konstante des turbulenten Impulstransports in der Unterschicht und τ die Schubspannung (die hier wie in [3], [4] und [6] anstelle der Wandschubspannung τ_0 bei van Driest [8] steht) bedeuten.

Nach multiplikativer Kombination beider Ansätze (a) und (b) erhalten wir in unseren Koordinaten $y = \delta - \bar{y}$ bzw. $\eta = 1 - \bar{\eta}$ und unter Beachtung der Folgerungen (vgl. [3]) aus der Bewegungsgleichung

$$\frac{\tau}{\rho} = gy = g\delta\eta$$
 (g Erdbeschleunigung)

$$\bar{A}_{q} = \begin{cases} E_{0} [\varkappa (1-\eta) e^{(1-\eta)/m} \\ \times \left\langle 1 - \exp\left\{-\frac{S}{\sqrt{(E_{0})a}}(1-\eta) \\ \times \sqrt{(\eta)}\right\} \right\rangle]^{2} \left|\frac{\mathrm{d}\varphi}{\mathrm{d}\eta}\right| \qquad (15) \\ & \text{für } 1 - m \leq \eta \leq 1 \\ \bar{A}_{q}|_{\eta=1-m} \qquad & \text{für } 0 \leq \eta \leq 1 - m \end{cases}$$

wobei

$$S = F^{-\frac{1}{2}}Re \tag{16}$$

mit der Reynoldsschen Zahl (13) und der Froudeschen Zahl

$$F = \frac{u_1^2}{g\delta} \tag{17}$$

die charakteristische Kennzahl des jeweiligen Strömungsmodells darstellt.

3. BERECHNUNG DER TEMPERATURVERTEILUNG UND DER WÄRMEÜBERGANGSZAHLEN

1. Rechengang

Der Berechung der Verteilung der dimensionslosen Temperatur $\chi(\xi, \eta)$ aus der Energiegleichung (6) mit den Anfangs- und Randbedingungen (7), (8), (9) legen wir den Separationsansatz

$$\chi(\xi,\eta) = 1 - \sum_{n=0}^{\infty} a_n \psi_n(\eta) e^{-\alpha_n \xi}$$
 (18)

zugrunde, mit dem wir in (6) eingehen und dabei annehmen, dass die Funktionenreihe gliedweise differenziert werden darf. Die Energiegleichung (6) wird erfüllt, wenn die Koeffizienten bei $e^{-\alpha_n\xi}$ übereinstimmen, also die gewöhnlichen Differentialgleichungen für $\psi_n(\eta)$

$$\varphi(\eta)\alpha_n\psi_n + \frac{\mathrm{d}}{\mathrm{d}\eta}\left\{ \left[\bar{\lambda} + \bar{A}_q(\eta)\right] \frac{\mathrm{d}\psi_n}{\mathrm{d}\eta} \right\} = 0;$$

$$n = 0, 1, 2, \dots \qquad (19)$$

befriedigt werden. Dabei ist $\bar{\lambda}$ nach (10) eine für jedes Strömungsmodell bekannte Konstante, $\bar{A}_q(\eta)$ nach (15) auf Grund der von uns akzeptierten Hypothesen eine gegebene Funktion und $\varphi(\eta)$ die vom Verf. [3] berechnete dimensionslose Geschwindigkeitsverteilung einer Rieselfilmströmung.

Die Randbedingungen (8) und (9) für $\chi(\xi, \eta)$ sind erfüllt, wenn die Lösungen $\psi_n(\eta)$ von (19^r den entsprechenden Randbedingungen

$$\psi_n(1) = 0 \tag{20}$$

$$\psi_n'(0) = \frac{\mathrm{d}\psi_n}{\mathrm{d}\eta}\Big|_{\eta=0} = 0 \tag{21}$$

genügen.

Mathematisch handelt es sich bei der Folge von Gleichungen (19) mit den Randbedingungen (20) und (21) um ein Sturm-Liouvillesches Eigenwertproblem mit den Eigenwerten α_n und dem vollständigen System von Eigenfunktionen $\psi_n(\eta)$, die den Orthogonalitätsrelationen $\int_{0}^{0} \varphi \psi_m \psi_n d\eta = 0$ für m, n = 1, 2, 3, ... und $m \neq n$ genügen (s.z.B. [18], S.281 ff.). Die im Separationsansatz (18) vorkommenden Koeffizienten a_n lassen sich dann aus der Anfangsbedingung (7) für $\chi(\xi, \eta)$ ermitteln. Setzt man in (18) $\xi = 0$, so wird (7) erfüllt, wenn

$$1 = \sum_{n=0}^{\infty} a_n \psi_n(\eta) \text{ für } 0 \le \eta < 1$$
 (22)

gilt. Wegen der Vollständigkeit und Orthogonalität des Systems von Eigenfunktionen $\{\psi_n(\eta)\}$ lassen sich die Fourierschen Koeffizienten a_n nach den Formeln

$$a_n = \frac{\int\limits_{0}^{1} \varphi(\eta) \psi_n(\eta) \,\mathrm{d}\eta}{\int\limits_{0}^{0} \varphi(\eta) \psi_n^2(\eta) \,\mathrm{d}\eta}$$
(23)

berechnen.

Mit Hilfe eines Differenzenverfahrens wurden die ersten acht Eigenwerte α_n , Eigenfunktionen $\psi_n(\eta)$ und Fourierschen Koeffizienten a_n näherungsweise auf dem Digitalrechner Robotron-300 im Rechenzentrum des Zentralinstituts für Mathematik und Mechanik der Deutschen Akademie der Wissenschaften zu Berlin berechnet.*

Die Tab. 1 bis 5 enthalten die $\varphi(\eta)$, α_n , $\psi_n(\eta)$ und a_n für die Kennzahlen

$$S = 1; 22; 60; 80; 120,$$
 (24)

die den Reynoldsschen Zahlen

$$Re = 0,5; 228,3; 1031; 1453; 2300$$

entsprechen, sowie für einige $\bar{\lambda} = \frac{1}{Pr \cdot Re}$, die den

Prandtl-Zahlen

$$Pr = 5,4; 9,4; 43,4; 104; 210$$
(25)

der von Wilke [2] untersuchten Versuchsflüssigkeiten (Wasser, Diäthylenglykol und deren Mischungen) mit den Dichten

 $\rho = 0.9956; 1.019; 1.075; 1.097$ bzw. 1.108 g/cm³, den kinematischen Zähigkeiten

v = 0,00798; 0,0122; 0,043; 0,0902 bzw.

 $0,168 \text{ cm}^2/\text{s}$

und den spezifischen Wärmen

 $c_p = 0,998; 0,949; 0,778; 0,676$ bzw.

0,589 cal/(g.grad)

entsprechen.

Anhand der Tab. 1 bis 5 lassen sich nun die dimensionslosen Temperaturprofile $\chi(\xi, \eta)$ nach Formel (18) für die Kennzahlen (24) und (25) bis zum achten Glied der Reihe in (18) berechnen.

Tabelle 1. Eigenwerte und -funktionen sowie Fourierkoeffizienten zum Wärmeübergang an einen laminaren Rieselfilm mit der Kennzahl S = 1

$S = 1 v = 0.798 \cdot 10^{-2} \text{ cm}^2/\text{s}$			Re = 0.5 $Pr = 5.4$			$Re_0 = 0,3333$ $\lambda = 0,370$				
n	0	1	2	3	4	5	6	7		
α	1,06	12,1	35,0	70,0	117	176	246	328		
a,	8,296	- 2,204	1,270	- 0,806	0,663	-0,465	0,447	-0.315		
$\psi_{n}(0,2)$	0,137	0,059	-0,041	-0,114	-0,121	-0,059	0,037	0.110		
$\psi_{n}(0,4)$	0,114	-0,083	-0,111	0,073	0,112	- 0,066	0.114	0.060		
$\psi_{n}^{''}(0,6)$	0,081	-0,147	0,096	0,025	-0.124	0.128	-0.036	-0.082		
$\psi_{n}^{''}(0,8)$	0,041	-0,098	0,136	-0,157	0,160	-0.145	-0.114	-0.072		
$\psi_n^{\prime\prime}(1)$	-0,207	0,510	-0,769	1,01	-1,23	1,50	- 1,66	1,86		
Geschwind	ligkeitsprofil	$\varphi(\eta) = 1 -$	η ²							

^{*} Für die Programmierung sowie die zugehörigen numerischen und graphischen Arbeiten danke ich Herrn Dr. G. Hebermehl und Frau S. Lang.

In den Tabellen sind des weiteren die Ableitungen der Eigenfunktionen $\psi'_n(1)$ angegeben, um den Wärmeübergang an der Wand berechnen zu können. Die in der Wärmetechnik gebräuchliche Nusseltsche Zahl

$$Nu = \frac{q_0}{\lambda} \frac{\delta}{T_0 - T_1},$$
 (26)

wobei

$$q_0 = \lambda \left(\frac{\partial T}{\partial y}\right)_{y=\delta}$$

die Wärmestromdichte an der Wand ist, ergibt sich in unseren dimensionslosen Variablen (5) als Ableitung der dimensionslosen Temperatur an der Wand

$$Nu = \frac{\partial \chi}{\partial \eta}\Big|_{\eta=1},$$
 (27)

also haben wir nach (18) unter der Voraussetzung der gliedweisen Differenzierbarkeit

$$Nu = \sum_{n=0}^{\infty} a_n \psi'_n(1) e^{-\alpha_n \xi}.$$
 (28)

Abbildung 2 enthält für Prandtl-Zahlen

Pr = 5,4 und 9,4

und die Kennzahlen (24) die Darstellung der Nusseltschen Zahl (28) über der dimensionslosen Lauflänge ξ .

2. Vergleich mit Messungen

Um unsere Ergebnisse mit den Experimenten von Wilke [2] vergleichen zu können, ist zu beachten, dass Wilke eine andere Nusseltsche Zahl benutzt:

$$Nu_w = \frac{\alpha \delta}{\lambda}$$
 (29)

wobei a die Wärmeübergangszahl

$$\alpha(x) = \frac{\lambda}{T_0 - T_m} \left(\frac{\partial T}{\partial y}\right)_{y=\delta}$$
(30)

mit der mittleren Rieselfilmtemperatur

$$T_m = \left[\int_0^\delta Tu \, \mathrm{d}y\right] \cdot \left[\int_0^\delta u \, \mathrm{d}y\right]^{-1} \tag{31}$$

bedeutet. Durch Transformation auf unsere dimensionslosen Variablen (5) ergibt sich

$$Nu_{W} = \frac{\partial \chi}{\partial \eta} \bigg|_{\eta=1} \left\{ 1 - \left[\int_{0}^{1} \chi \varphi \, \mathrm{d} \eta \right] \left[\int_{0}^{1} \varphi \, \mathrm{d} \eta \right]^{-1} \right\}^{-1}.$$
(32)

Tabelle 2. Geschwindigkeitsprofil, Eigenwerte und -funktionen sowie Fourierkoeffizienten zum Wärmeüberga	ng
an einen laminaren Rieselfilm mit der Kennzahl S = 22	

	v = 0,798	= 22 $10^{-2} \text{ cm}^2/\text{s}$		Re = Pr =	228,3 5,4	$Re_{0} = 154$ $\lambda = 0.811 \cdot 10^{-3}$		
n	0	1	2	3	4	5	6	7
$10^{2} \alpha_n$	0,297	3,79	11,4	22,6	37,8	56,7	79,5	106
a,	8,540	- 1,903	1.097	-0,713	0,597	-0,416	0,407	-0,281
ψ (0,2)	0,132	0,066	0,029	-0,102	-0,120	-0,076	0,007	0,086
$\psi''_{(0,4)}$	0,115	-0,067	-0,117	0,042	0,122	-0,017	-0,123	-0.007
ψ ^(0.6)	0,089	0,142	0,066	0,066	-0,134	0,076	0,051	-0.130
ψ ["] (0,8)	0,052	-0,113	0,154	-0.168	0,153	-0,114	0.057	0,009
$\psi'_n(1)$	-0.268	0,622	-0,955	1,27	-1,57	1,85	-2,12	2,37
	$v = 1.22 \cdot 10^{-2} \text{ cm}^2/\text{s}$			Pr =	9,4	$\tilde{\lambda} = 0,466 \cdot 10^{-3}$		
n	0	1	2	3	4	5	6	7
$10^2 \cdot \alpha_{n}$	0,193	2,66	8,10	16,0	26,8	40,2	56,3	75,0
a "	8,643	-1,739	1,018	0,667	0,566	-0,392	0,388	-0,265
w ["] (0.2)	0.129	0,068	-0.025	-0,095	-0,118	-0,082	-0.005	0,074
w (0.4)	0.114	0,060	-0,118	0,029	0,121	0,003	-0,119	-0,033
w (0.6)	0.092	-0,139	0,053	0,080	-0,129	0,047	0,082	-0,127
1 (0.8)	0.057	-0.120	0,161	~0,170	0,144	-0,090	0,020	0,052
$\psi'_{n}(1)$	-0,307	0,682	- 1,07	1.43	- 1.77	2,08	-2,39	2,68

	$v = 4, 3 \cdot 1$	0 ² cm ² /s		Pr = 43,4			4 $\lambda = 0,101 \cdot 10^{-3}$					
n	0	1	2	3		4	5	6		7		
$10^3 \cdot \pi_{-}$	0.660	14.0	43,6	84,	8	141	211	295	393	3		
a. a	9,008	-1,128	0,765	· -0,	512	0,465	-0,306	0,323	-(),206		
ψ ["] .(0.2)	0,120	0,074	0,008	-0,	070	-0,101	-0,092	- 0,043	(0,023		
ψ_(0,4)	0,112	-0,038	-0,110	-0,	017	0,097	0,067	-0,062	-(),098		
₩ (0,6)	0,101	-0,122	0,004	0,	108	-0,070	-0,064	0,110	- (0,007		
10.8)	0.077	-0,144	0,176	i −0,	140	0,051	0,055	-0,137	· (),165		
$\psi_n'(1)$	-0,491	1,01	-1,69	2,	32	-2,92	3,43	-3,95	4	1,42		
	$v = 9,02 \cdot 1$	$v = 9.02 \cdot 10^{-2} \mathrm{cm}^2/\mathrm{s}$.04	$\bar{\lambda} = 0,421 \cdot 10^{-4}$					
n	0	1	2	3		4	5	6		7		
$10^3 \cdot \alpha$	0,370	11,6	35,5	68,	2	112	168	234	312	2		
a ⁿ	9,208	-0,795	0,638	-0,	430	0,408	-0,258	0,284	-(0,173		
1. (0.2)	0,114	0,075	0,001	-0,	054	-0,086	-0,090	- 0,060) –(0,007		
ψ_(0,4)	0,110	-0,027	-0,099	-0,	040	0,068	0,086	-0,010	I -(),092		
¥ (0,6)	0,103	-0,110	-0,021	0,	103	-0,016	-0,097	0,054	. (0,075		
₩ (0.8)	0,087	-0,153	0,166	5 -0,	085	-0,041	0,138	-0,153	. (0,082		
$\psi_n(1)$	-0,613	1,35	2,39	3,	32	-4,18	4,92	- 5 ,65		5,35		
	$v = 16.8 \cdot 1$	$0^{-2} \mathrm{cm}^2/\mathrm{s}$			Pr = 2	210	X	= 0,209 · 1	10-4			
n	0	1	2	3		4	5	6		7		
$10^3 \cdot \alpha$	0.231	10,5	31,4	59,	4	97,2	145	202	269	9		
a	9,345	-0.581	0.556	5 -0,	375	0,367	-0.225	0,256	i –(0,149		
$\psi_{(0,2)}$	0,111	0,075	0,006	-0,	041	-0,073	-0,084	-0,067	' -(0,026		
ψ_(0,4)	0,108	-0,020	-0,088	s -0,	052	0,043	0,086	0,026	i –(0,065		
₩ (0.6)	0,104	-0,101	-0,035	5 0,	088	0,023	-0,093	-0,005	i (0.093		
ψ_(0,8)	0,093	-0,156	0,145	5 -0,	028	-0,102	0,148	-0,081	(0,045		
$\psi'_n(1)$	-0,748	1,73	- 3,23	4,	50	- 5,66	6,69	- 7,65	8	8,60		
Geschwin	ndigkeitsprofil	φ(η)				<u> </u>						
η	0 0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1		
φ(η)	1 0,990	0,962	0,914	0,848	0,762	0,658	0,531	0,379	0,201	0		

Tabelle 2-Fortsetzung

Unter der Annahme, dass die Reihe (18) gliedweise über η integriert werden kann, lässt sich das Integral $\int_{0}^{1} \chi \varphi \, d\eta$ folgendermassen umformen:

$$\int_{0}^{1} \chi \varphi \, \mathrm{d}\eta = \int_{0}^{1} \varphi \left[1 - \sum_{n=0}^{\infty} a_n \psi_n(\eta) \, \mathrm{e}^{-\alpha_n \xi} \right] \mathrm{d}\eta$$
$$= \int_{0}^{1} \varphi \, \mathrm{d}\eta - \sum_{n=0}^{\infty} a_n \, \mathrm{e}^{-\alpha_n \xi} \int_{0}^{1} \varphi \psi_n \, \mathrm{d}\eta.$$

Es folgt unter Beachtung von (19) und (21) für die Eigenfunktionen $\psi_n(\eta)$

$$\int_{0}^{1} \varphi \psi_{n} d\eta = -\frac{1}{\alpha_{n}} \int_{0}^{1} \frac{d}{d\eta} \{ [\bar{\lambda} + \bar{A}_{q}(\eta)] \psi_{n}'(\eta) \} d\eta$$
$$= -\frac{1}{\alpha_{n}} \{ [\bar{\lambda} + \bar{A}_{q}(1)] \psi_{n}'(1) \}$$
$$= -\frac{\bar{\lambda}}{\alpha_{n}} \psi_{n}'(1);$$

denn nach (15) ist $\bar{A}_{q}(1) = 0$. Damit wird

$$\int_{0}^{1} \chi \varphi \, \mathrm{d}\eta = \int_{0}^{1} \varphi \, \mathrm{d}\eta + \lambda \sum_{n=0}^{\infty} \frac{a_n}{\alpha_n} \psi'_n(1) \, \mathrm{e}^{-\alpha_n \xi}. \quad (33)$$

	S = .60					$R_{P} = 1$	031	$R_{\nu} = 768$				
	v =	$v = 0.798 \cdot 10^{-2} \mathrm{cm}^2/\mathrm{s}$				Pr = 1	5,4	$\lambda = 0.180 \cdot 10^{-3}$				
n	0 1		1	2		3	4	5	6		7	
$10^3 \cdot \alpha_n$		1.62	34.7	110	220)	366	547	763	101	7	
a_ "		9,270	- 1,046	0,63	36 -0	,416	0,395	-0,266	0,28	4 –	0,184	
$\psi_{n}^{n}(0,2)$		0,116	0,084	0,00)5 -0	,061	-0,099	-0,104	-0,06	9 -1	0,010	
$\psi_{n}(0,4)$		0,110	- 0,019	-0.11	6 -0	,047	0,079	0,097	-0,01	4 - (0,105	
$\psi''(0,6)$		0,101	-0,107	-0.03	0 0	,116	-0,027	-0,101	0.07	1 (0,068	
$\psi_{n}^{'}(0,8)$		0,084	-0,147	0,15	50 -0	,079	-0,031	0,121	-0.14	4 (880,0	
$\psi_n^{\prime\prime}(1)$		-0,703	1,46	-2,37	⁷ 3	,27	4,20	5,03	- 5,84		6,59	
	v	$v = 1.22 \cdot 10^{-2} \mathrm{cm^2/s}$				Pr = 9	9,4	$\bar{\lambda} = 0.103 \cdot 10^{-3}$				
n		0	1	2		3	4	5	6	•• •• •• <u></u> -	7	
$10^3 \cdot \alpha_n$		1,15	31,4	101	199		329	492	684	91	1	
a_ "		9,381	-0,820	0,53	4 -0	,356	0,356	-0,236	0,25	9 (0,162	
$\psi_{r}(0,2)$		0,113	0,085	0,00	9 – 0	,052	0,090	-0,099	-0.07	5 (0,024	
$\psi_{(0,4)}$		0,109	-0,012	-0,11	0 -0	,056	0,062	0,099	0,01	3 – (0,088	
$\psi_{(0,6)}$		0,102	0,100	-0,04	1 0	.108	0,000	-0,105	0,03	2 (0,094	
$\psi''_{0,8}$		0,090	-0.148	0,13	9 -0	,049	-0,068	0,137	-0.11	3 (0,015	
$\psi'_n(1)$	-	-0,870	1.77	-2,92	4	,17	- 5.42	6,53	- 7,55	5	8,53	
Geschwi	ndigke	itsprofil	φ(η)									
η $\phi(n)$	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	

 $Tabelle \ 3. \ Geschwindigkeitsprofil, Eigenwerte \ und \ -funktionen \ sowie \ Fourierkoeffizienten \ zum \ Wärmeübergang \\ an \ einen \ turbulenten \ Rieselfilm \ mit \ der \ Kennzahl \ S = 60$

ABB. 2. Nusseltsche Zahl Nu über der dimensionslosen Lauflänge ξ für einige Kennzahlen S und die Prandtl-Zahlen Pr = 5.4 und 9,4.

	S = 80 v = 0,798 \cdot 10^{-2} cm ² /s					Re = 1453 $Pr = 5.4$			$Re_{0} = 1120$ $\bar{\lambda} = 0.127 \cdot 10^{-3}$			
n	0		1	2	3		4	5	6	-	7	
$10^3 \cdot \alpha$	1,51	1	37,2	120	239		398	595	828	1100)	
a. "	9,41	18	-0,889	0,54	1 -0.	349	0,343	-0,230	0,254	4 -0	,161	
$\psi_{.}^{'}(0,2)$	0,11	13	0,087	0,01	2 - 0	053	-0,094	-0,105	- 0,080) -0	,028	
$\psi_{(0,4)}$	0,10)9	-0,009	-0,11	3 - 0	062	0,062	0,104	0,018	8 -0	,089	
ψ (0,6)	0,10)2	-0,097	-0,04	8 0	111	0,004	-0,109	0,030) 0	,098	
$\psi_{(0,8)}$	0,08	39	-0,146	0,13	1 -0	039	-0,074	0,137	- 0,107	70	,006	
$\psi'_n(1)$	-0,94	19	1,93	- 3,14	4,	37	- 5,68	6,89	- 8,02	9	,11	
	$v = 1.22 \cdot 10^{-2} \text{ cm}^2/\text{s}$					Pr = 9	9,4	$\bar{\lambda} = 0.073 \cdot 10^{-3}$				
n	0		1	2	3		4	5	6	•	7	
$10^3 \cdot \alpha_{\mu}$	1,08	3	34,5	112	222		367	547	761	1010	J	
a_ "	9,51	12	-0,681	0,44	4 -0	291	0,307	-0,202	0,231	l – 0	,141	
$\psi_{(0,2)}$	0,11	11	0,088	0,01	5 -0	046	-0,085	-0,099	-0,082	2 -0	,039	
$\psi(0,4)$	0,10)7	-0,004	-0,10	7 -0.	067	0,046	0,100	0,039) −0	,067	
ψ (0,6)	0,10)2	-0,091	-0,05	6 0,	101	0,025	-0,102	-0,000	50	,102	
$\psi_{.}(0,8)$	0,09	93	-0,146	0,11	9 -0.	013	-0,097	0,129	- 0,058	3 -0	,057	
$\psi_n'(1)$	-1,18 2,36 -3,95		5.	63	- 7,42	9,07	- 10,6	11	,9			
Geschwi	ndigkeitspr	ofil φ	(ŋ)									
η	0 0,1		0,2	0,3	0,4	0,5	0,6	0,7	0.8	0,9	1	
φ(η)	1 0,9	994	0,977	0,947	0,906	0,855	0,793	0,713	0,596	0,388	0	

Tabelle 4. Geschwindigkeitsprofil, Eigenwerte und -funktionen sowie Fourierkoeffizienten zum Wärmeübergang an einen turbulenten Rieselfilm mit der Kennzahl S = 80

Mit (27) und (28) erhalten wir dann für die von Wilke verwendete Nusseltsche Zahl (32)

$$Nu_{W} = \frac{\int_{0}^{1} \varphi \, d\eta \sum_{n=0}^{\infty} a_{n} \psi_{n}'(1) e^{-\alpha_{n}\xi}}{\bar{\lambda} \sum_{n=0}^{\infty} \frac{a_{n}}{\alpha_{n}} \psi_{n}'(1) e^{-\alpha_{n}\xi}}.$$
 (34)

Anhand der Tabellen 1 bis 5 wurden die Nu_W bis auf 8 Glieder (n = 0, 1, ..., 7) berechnet wobei sich für die Kennzahlen S = 1; 22; 60; 80; 120 die zugehörigen Integrale

$$\int_{0}^{1} \varphi \, \mathrm{d}\eta = 0,6667; \, 0,6764; \, 0,7452; \, 0,7705; \, 0,8017$$

nach den in [3] durchgeführten Berechnungen ergaben—und in Abb. 3 mit den Messungen von Wilke [2] verglichen. Man bemerkt eine relativ gute Übereinstimmung im vollturbulenten Bereich $(Re_0 > 800)^*$, wobei nur der thermisch ausgebildete Zustand (Werte von Nu_W für grosse $\xi = x/\delta$) betrachtet wird.

Für den thermisch ausgebildeten Zustand erhalten wir die mathematisch sehr genaue und einfache Näherungsformel für Nu_W (Fehler <1 Prozent)

$$Nu_{W} \approx \alpha_{0} PrRe_{0},$$
 (37)

* Wilke benutzt die mittlere Reynoldssche Zahl

$$Re_{0} = \frac{w\delta}{v} = Re \int_{0}^{1} \varphi \, \mathrm{d}\eta, \qquad (35)$$

wobei wie in [3]

$$w = \frac{1}{\delta} \int_{0}^{\delta} u(y) \, \mathrm{d}y \tag{36}$$

die mittlere Geschwindigkeit der Rieselfilmströmung bedeutet.

	S = 120 v = 0.798 \cdot 10^{-2} cm ² /s					$\begin{aligned} Re &= 2300\\ Pr &= 5.4 \end{aligned}$			$Re_0 = 1844$ $\lambda = 0.081 \cdot 10^{-3}$			
n		0	1	2	-	3	4	5	6		7	
$10^2 \cdot \alpha_n$		0,141	4,04	13,3	26	,6	44,2	66,2	92,1	12	22	
a _n		9,571	-0,729	0.43	8 -0	,273	0,281	-0,185	0,215	5 -0),133	
$\psi_{n}(0,2)$		0,111	0,092	0,01	9 -0	,046	-0,090	-0,105	- 0,089) -0),044	
$\psi_{n}(0,4)$		0,107	0,001	-0,11	0 -0	,075	0,045	0,107	0.044	4 -0),067	
$\psi_{n}(0,6)$		0,102	-0,087	-0,06	4 0	.104	0,032	-0,106	-0,010) ()),106	
$\psi_{n}^{"}(0,8)$		0,093	-0,142	0,10	7 0	,001	-0,106	0,127	- 0,048 -),068	
$\psi_n'(1)$		1,44	2,85	-4,63	6	,47	-8,47	10,43	-12,28	14	1,0	
	$v = 1,22 \cdot 10^{-2} \mathrm{cm}^2/\mathrm{s}$				Pr =	9,4	$\lambda = 0,046 \cdot 10^{-3}$					
n		0	1	2		3	4	5	6		7	
$10^2 \cdot \alpha_{\mu}$		0,101	3,83	12,6	25	.3	41,8	62,3	86,4	115	5	
a_ "		9,645	-0,546	0,35	1 -0	,220	0,246	-0,159	0,197	7 -0),115	
$\psi_{}^{''}(0,2)$		0,108	0,092	0,02	1 -0	,040	-0,082	- 0,099	0,088	-0,051		
$\psi_{(0,4)}$		0.106	0,005	-0,10	5 -0	,078	0,033	0,100	0,058	3 -0),046	
$\psi_{}^{''}(0,6)$		0,102	-0,081	-0,06	90	,094	0,046	-0,094	-0,036	50	0,095	
$\psi_{(0,8)}$		0,095	-0,140	0,09	60	,020	-0,114	0,106	-0,003	3 -0),101	
$\psi_n^n(1)$	-	1,79	3,51	- 5,82	8	,35	-11,1	13,9	16,4	18	3,8	
Geschwi	ndigkeit	sprofil o	φ(η)									
n	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	
$\dot{o}(r)$	1	0.995	0.980	0.955	0.020	0.877	0.825	0.760	0.665	0.485	0	

Tabelle 5. Geschwindigkeitsprofil, Eigenwerte und -funktionen sowie Fourierkoeffizienten zum Wärmeübergang an einen turbulenten Rieselfilm mit der Kennzahl S = 120

ABB. 3. Nusseltsche Zahl Nu_w über der mittleren Reynoldszahl Re_0 einer Rieselfilmströmung für verschiedene Versuchsflüssigkeiten (H₂O, M I bis M IV) bzw. Prandtl-Zahlen (5.4; 9.4; 43,4; 104; 210); Messpunkte von W. Wilke

die sich aus (34) dadurch ergibt, dass man nur das erste Glied der vorkommenden Summen berücksichtigt und (10) sowie (35) beachtet. Die zweiten und höheren Glieder der Summen in (34) sind gegenüber dem jeweiligen ersten Glied vernachlässigbar, da für die Kennzahlen (24) und Prandtl-Zahlen (25) die entsprechenden Eigenwerte

$$\alpha_i \gg \alpha_0$$
 für $i = 1, 2, ...$

sind (vgl. die Tabellen 1 bis 5).

Man benötigt also nur den kleinsten Eigenwert α_0 des Sturm-Liouvilleschen Eigenwertproblems (19)–(21). Abbildung 4 zeigt die Abhängigkeit des kleinsten Eigenwertes α_0 von der mittleren Reynoldsschen Zahl Re_0 für die Prandtl-Zahlen (25).

3. Laminare Rieselfilme

Unsere Theorie beinhaltet auch den Wärmeübergang an laminare Rieselfilme; entspr. zeigt sich nach Abb. 3 eine sehr gute Übereinstimmung mit dem Experiment bei kleinen Reynoldsschen Zahlen Re_0 .

Dagegen zeigen sich merkbare Abweichungen der Theorie vom Experiment im laminaren Bereich mit starker Wellenbildung und im Übergangsbereich ($Re_0 < 800$) von der laminaren zur turbulenten Strömungsform mit intermittierendem Auftreten von Turbulenz, auf deren Beschreibung unsere Theorie allerdings auch keinen Anspruch erhebt.

Es ist noch zu bemerken, dass man mit den einmal berechneten Eigenwerten α_n , Eigenfunktionen $\psi_n(\eta)$ und Fourierkoeffizienten c_n im laminaren Fall (für kleine S, z.B. S = 1) Wärmeübergangsprozesse zwischen einer festen Wand und einem ausgebildeten laminaren Rieselfilm ein für allemal berechnet hat (vgl. [4], V):

Für beliebige laminare Rieselfilme im ausgebildeten Zustand ist nämlich

$$\varphi(\eta) = 1 - \eta^2$$
 und $\overline{A}_a(\eta) = 0$, (38)

so dass sich in (19) mit anderen Re und Pr wegen (10) nur $\overline{\lambda}$ ändern kann (etwa um das k-fache).

Dann braucht in (19) der jeweilige Eigenwert α_n auch nur um das k-fache verändert zu werden, während die Eigenfunktionen $\psi_n(\eta)$ unverändert bleiben. Deshalb bleiben gemäss (23) auch die

ABB. 4. Abhängigkeit des kleinsten Eigenwertes α_0 von der mittleren Reynoldszahl Re_0 für einige Prandtl-Zahlen Pr.

Fourierkoeffizienten a_n dieselben. Für S = 1bzw. Re = 0.5 sind demzufolge die α_n , a_n und $\psi_n(\eta)$ in Tabelle 1 nur für eine Prandtl-Zahl, und zwar für Pr = 5.4 angegeben.

Für eine andere Prandtl-Zahl ändert sich also nur die Zeile für α_n , z.B. für Pr = 9.4 durch Multiplikation der einzelnen α_n der Tabelle mit

$$k = \frac{5.4}{9.4} = 0.5745. \tag{39}$$

Die entsprechende Zeile lässt sich auch für andere *Pr* und *Re* analog bilden.

LITERATURVERZEICHNIS

- 1. H. BRAUER, Strömung und Wärmeübergang bei Rieselfilmen, Forsch-Hft. Ver. dt. Ing. 457 (1956).
- W. WILKE, Wärmeübergang an Rieselfilmen, ForschHft. Ver. dt. Ing. 490 (1962).

- H. LIMBERG, Über die turbulente Strömung in einem Rieselfilm, Mber. Dt. Akad. Wiss. Berl. 12(5), 333-341 (1970). Turbulent flow of a falling liquid film, Arch. Mech.—Arch. Mech. Stosowanej 24, 1; 35-42 (1972).
- H. LIMBERG, Die Diffusion von Gasen in turbulente und laminare Rieselfilme, Schriftenreihe der Institute für Mathematik, Reihe B, Heft 13. Akademie-Verlag Berlin (1973).
- 5. W. SZABLEWSKI, Turbulente Grenzschichten mit Druckabfall, Ing. --Arch. 37, 267-280 (1968).
- W. SZABLEWSKI, Zum turbulenten Austausch in inkompressiblen turbulenten Grenzschichten bei relativ dicker Unterschicht. Mber. Dt. Akad. Wiss. Berl. 12(5), 325-332 (1970).
- 7. W. SZABLEWSKI, Inkompressible turbulente Temperaturgrenzschichten mit konstanter Wandtemperatur, Int. J. Heat Mass Transfer 15, 673-706 (1972).
- 8. E. R. VAN DRIEST, On turbulent flow near a wall, J. Aeronaut. Sci. 23(11), 1007–1011 (1956).
- 9. E. KAMKE, Differentialgleichungen reeler Funktionen, Leipzig (1956).

HEAT TRANSFER IN TURBULENT AND LAMINAR RIPPLING FILMS

Abstract—The distribution of temperature in a falling liquid film running down a vertical plane (heated or cooled) wall is determined on the basis of the equation of heat transfer with boundary and initial conditions corresponding to a constant temperature T_0 of the wall and a constant temperature T_1 within the whole entrance section of the film. A separation method yields a Sturm-Liouville eigenvalue problem being solved numerically by means of finite differences. Several tables show the first eight eigenvalues, eigenfunctions and Fourier coefficients belonging to some Reynolds numbers. A diagram gives the theoretically calculated Nusselt number over mean Reynolds number Re_0 together with Wilke's experimental data being in good agreement for such Re_0 corresponding to a turbulent film and to a laminar film without rippling.

TRANSFERT THERMIQUE DANS DES FILMS RIDES TURBULENTS ET LAMINAIRES

Résumé—La distribution de température dans un film liquide tombant le long d'une paroi plane verticale (chauffée ou refroidie) est déterminée sur la base de l'équation du transfert thermique avec des conditions initiales et aux limites correspondant à des températures constantes T_0 de paroi et T_1 dans la section d'entrée du film. Une méthode de séparation fournit un problème à valeur propre de Sturm-Liouville résolu numériquement au moyen de différences finies. Plusieurs tables donnent les huit premières valeurs propres, les fonctions propres et les coefficients de Fourier relatifs à quelques nombres de Reynolds. Un diagramme donne le nombre de Nusselt calculé théoriquement au-dessus du nombre de Reynolds moyen Re_0 et les résultats expérimentaux de W. Wilke sont en bon accord pour Re_0 correspondant à un film laminaire sans ride.

ПЕРЕНОС ТЕПЛА В ЛАМИНАРНЫХ И ТУРБУЛЕНТНЫХ ПАДАЮЩИХ ПЛЕНКАХ

Аннотания— Распределение температур в тонком слое жидкости, стекающей по вертикальной плоской стенке (подогретой или охлажденной), определяется с помощью уравнения теплопроводности при граничных и начальных условиях, соответствующих постоянной температуре стенки T_0 и постоянной температуре полного поперечного сечения слоя T_1 . Метод Фурье приводит к задаче Штурма-Лиувилля для собственных значений, которая решается численно методом конечных разностей. Приводятся таблицы первых восьми собственных значнеий, собственных функций и коэффициентов Фурье. Представлены расчетные кривые чисел Нуссельта, которые сравниваются с экспериментальными данными В. Вильке. Как для ламинарного так и для турбулентного слоя на гладкой поверхности совпадение оказалось удовлетворительным.